| Examples of Soil Cement Mixing for Stabilization of Coal Tar/Coal Tar Constituents | | | | | | | |--|--|----------------------|--|---|--|--| | Site Name | Location /
Regulatory Agency | Contaminants | Description | Reference | | | | Former MGP
Site | Columbus, GA /
Georgia Department
of Natural Resources | PAH's, TPH,
VOC's | In-situ treatment was accomplished by mixing/drilling a Type I portland cement slurry with the soil to an approximate depth of 35 feet using an 8-foot-diameter auger. | USEPA Office of
Solid Waste and
Emergency Response.
1999. A Resource for
MGP Site
Characterization and
Remediation,
May (EPA 542-R-99-
005) | | | | Augusta
Manufactured
Gas Plant | Augusta, GA | Coal Tar | A soil mixing auger was used to inject and mix portland cement into the soil. The 10-foot-diameter auger was run down through the soil. The auger had a hollow stem with auger flights equipped with nozzles. Cement-based grout was injected into the soil. The depth of auger mixing continued through the shallow groundwater saturated zone and into a few feet of the soft fractured rock zone beneath. Within the treated area, tar-like source material in the impacted soil was solidified in place. | Portland Cement Association Wesbite http://www.cement.or g/waste/wt_apps_bro wn_augusta.asp | | | | Wisconsin
Fuel & Light -
Former MGP
Site | Manitowoc, WI | Coal Tar | Soils were stabilized using a reagent mixture of activated carbon, cement, fly ash, and organophilic clays. The insitu treatment of impacted soil was accomplished by simultaneous injection and mixing of cement-based grout using 4- and 7-foot-diameter tools. | USEPA Office of
Solid Waste and
Emergency Response.
1999. A Resource for
MGP Site
Characterization and
Remediation,
May (EPA 542-R-99-
005) | | | | Appleton MGP
Site | Appleton, WI /
Wisconsin Department
of Natural Resources | Coal Tar | Cement and other reagents were mixed into coal tarimpacted soil while the soil remained in-place. This insitu mixing was accomplished using large | Portland Cement Association Wesbite http://www.cement.or g/waste/ec/wt_ec_05f eb.htm | | | | Examples of Soil Cement Mixing for Stabilization of Coal Tar/Coal Tar Constituents | | | | | | | |--|--|-----------------------|---|--|--|--| | Site Name | Location /
Regulatory Agency | Contaminants | Description | Reference | | | | | | | (12- and 8-foot) diameter reagent-injection soilmixing augers as well as backhoes. | | | | | Cambridge
Research Park
- Former MGP
Site | Cambridge, MA / Massachusetts Department of Environmental Protection | Coal Tar | Soil cement mixing technique was used for the in-situ stabilization of approximately 103,500 cubic yards of non-aqueous phase liquid (NAPL) impacted soils at the Site where contaminants exceed the Upper Concentration Limit (UCL) established by the Massachusetts Contingency Plan (310 CMR 40.0996). | Geo-Con Website
www.geocon.net/pdf/
paper51.pdf | | | | US Steel
Facility | Duluth, MN /
Minnesota Pollution
Control Agency | Coal Tar & Slag | Approximately 10,000 cubic yards of coal tar and tar contaminated soil were solidified in-place using insitu cement | MPCA Wesbite
http://www.pca.state.
mn.us/cleanup/sites/u
ss-
actionsummary01.pdf | | | | Former Wood
Treatment Site | Port Newark, New
Jersey | Creosote &
Arsenic | Wood preserving activities involving creosote impacted a 2-acre area at the site. Within this area, approximately 24,000 cubic yards of soil was impacted with creosote from a depth 2 to 12 feet below grade. In-situ cement soil mixing of the soils was carried out by mixing cement into the soil using an in-situ blender. | Portland Cement Association Wesbite http://www.cement.or g/waste/wt_apps_bro wn_port.asp | | |